
INCREASING INTEROPERABILITY BY CONVERGING SERVICES
IN CONSTRAINT-BASED-ROUTING NETWORKS

Dag-Anders Brunstad, James B. Michael
Computer Science Department, Naval Postgraduate School

Code CS/Mj, 833 Dryer Road, Monterey 93943-5118
Tel: +1 (831) 656-2655, Fax: +1 (831) 656-2814

E-mail: dag.brunstad@ftd.mil.no / bmichael@nps.navy.mil

June 1, 2000

Abstract: Putting the customer requirements in the center and
designing new systems around them is considered the right way to
design information systems. In this article we claim that
requirements change so fast in the information age that customer
needs are unknown and impossible to correctly predict for both
the customer and the system designer. Basing the design on a
model that can support changes by ensuring flexibility and
interoperability must therefore be given more attention. We
introduce an object-based network interoperability model, based
on the TCP/IP hourglass principle, where every system should be
designed as a network object. We also suggest a set of
constraints on object behavior with respect to interoperability.
By using the evolving constraint-based routing technology, we
can integrate all networks into one global system that both
supports all services and ensures fully communication-
interoperable systems.

KEYWORDS: Interoperability, Constraint-based routing, Networks,
System architecture

1. Introduction

After three to four decades of continuous improvement of the performance of
information systems with interoperability treated as a secondary issue, we have
ended up with myriads of non-interoperable (stovepipe) systems. The defense
community, both in U.S. and elsewhere have expended considerable resources to
make these systems meet application-specific demands for security and reliability.
Several of these systems are still working well as individual systems and are too
valuable to be replaced in a short timeframe. In contrast, as a rule of thumb, in the
commercial sector a computer system becomes obsolete after 18 months. Another
important factor that changes the way computerized systems are built is the shift in
user market. The arrival of the information age has led to an explosion of

mailto:dag.brunstad@ftd.mil.no
mailto:bmichael@nps.navy.mil

distributed users, databases, and communication networks in the commercial
sector. Twenty years ago the government and military were dominant forces in
steering the development of information systems. Today, when almost every
company in the commercial sector uses several kinds of information systems,
government and military systems constitute less than ten percent of the market.
This has lessened the interest shown by the private sector for providing custom
information systems and enabling technology for this relatively small community.
In addition, the willingness to pay the increasing cost of specialized government
and military systems is steadily decreasing.

One of the most important requirements for defense systems developed in the
future will be interoperability. General Collin L. Powell described the demands for
information systems like this “Give the battle field commander access to all the
information he needs to win the war. And give it to him when he wants it and how
he wants it.” The future expectations of computer and communication systems
seems to be that anyone, anywhere, at anytime should be able to communicate with
any other system. The question is how do we get there?

2. Change in the way systems are designed

2.1 Current Paradigm

The development process should start with the specification of an architecture,
which serves as a roadmap for planning and performing development tasks. Just
like a blueprint for a building, the network architecture is needed to give an overall
view of the components of the system infrastructure and show how technology,
users, processes, and tools fit together. The architecture also defines key strategies
and objectives in addition to the network structure and the standards and methods
applicable to the architecture. It is very common to divide up the tasks of complete
design into a five-phase process after a project is selected for development [1]. The
steps are: project initialization, planning and analysis, logical and physical design,
implementation and testing, operation and maintenance. Whether a system is
design bay following waterfall (the fore steps are done sequentially one time) or an
evolutionary (the for steps are performed repeatedly until an acceptable solution is
achieved) process model, most of these tasks are common in the design of new
information systems. The goal is to cover most of the needs identified for the initial
users and processes in a system, but in many cases system designers miss the
global view of an information system as being part of a larger system.

2.2 New paradigm: Bringing the network to the center

One of the problems we see is the lack of focus on requirements for future
interoperability with other information systems. Systems are in general designed
only to take care of the current and the instantaneous foreseeable needs in a
designated problem area. Let us take a look at some of the emerging management
philosophies that the information systems that is design is going to support. “We’re
not smart enough to predict the future, so we have to get better at reacting to it
more quickly” has become the company slogan in General Electric. Jack Welch,
the company’s widely quoted CEO, has earned respect as the golden child in
management circles for implementation of “philosophies” that have transformed
GE from a doomed old-fashion company, to a highly successful and customer
responsive giant. Haeckel [2] argues that successful companies have developed a
more rapid way of responding to the customer’s needs. He says “To understand as
early as possible the customer’s underlying, unarticulated request, organizations
must invest in collecting signals that may not appear to be a request at all.” The art
of listening for implicit as well as explicit requests and to be able to comply rapidly
too both is his recipe to success.

Economist’s like Davenport and Prusak [3] emphasize the problem of information
overflow. In order to take care of the information in a company and bring it to a
higher more useful and valuable stage, the information must be combined and
transformed into knowledge. The authors define three levels of maturity for what
systems display to the users: data (ones and zeros), information (processed and
organized data made presentable to the user), and knowledge (information
processed and organized into a higher level). System designers have developed
techniques to organize data into information. In today’s world of information
overflow, a higher level of organization of the available information is needed.
Sources of information at all levels should be able to exchange information and
enable the aggregation of knowledge from these sources.

Some of the experiences and theories we have discussed so far tell us that:

• The requirements of customers change at unpredictable rates.
• Neither the system designer nor the customer that the system is designed for

can predict with certainty the system requirements that the near future might
present.

• The technology in the system one designs might be obsolete before the
design is complete.

• Current information is one of the most important assets of our time.
• Success depends on quick decisions which in turn depend on current and

sorted information.
• It is necessary to try to anticipate and respond to the customer’s

requirements before the customer knows about the requirements.

What type of system design is this leading us to? This trend of requirements seems
to indicate that we need highly interoperable systems that can share and combine
information and that are very flexible and easily changeable.

We claim that the focus on placing the customer in the center and creating the
system according to his needs has been misinterpreted by system designers to
mean deliver only part of the needed product. According to the business indicators
we just looked at, neither designers nor customers know the real requirements for
the system. The solution to this dilemma, selected by most designers, is to create a
system after best guess and customize the system after the current and predictable
needs of the customer. In our opinion this design strategy is the origin of the
stovepipe systems that we see today. These system, are often working well for the
purpose they where created for but are not properly designed to share information
with or access information in other systems when the customers requirements
change.

Most system designers seem to be solving the problem of unknown requirements
for future use of the system in a similar way to what Isaac Newton did. To be able
to explain our world as concise transactions in a mathematical way, he chose to
overlook the creation of new systems and totally abounded Johannes Kepler’s
(1571 – 1630) theories about the harmonies in the overall system. Newton left the
creation of new systems as the domain of God (the story of the Creation from one
of the books of Pentateuch).

In order to create an information system that supports the processes of the ever-
changing business environment might be a difficult task, but we have to wait for a
while if we leave it to the powers beyond our control. The interoperability dilemma
has been researched for a number of years and for systems that includes both
hardware and software components, no other solution than to design a common
reference for all systems have been found. If we manage to define such a reference,
and design all our systems around it, we can look at it as the Keplerian view of
harmonic systems. The common base can enable creation of new systems inside
the overall system because all units are interoperable. To get away from stovepipe
systems and having to spend valuable resources to make the systems capable of
exchanging information, at a later point because requirements have changed, must
be the focus of the development process in the future.

We do not argue the importance for the individual system designers to put the
customer in focus. The importance of this is undisputable, but we need to give the
system designer another frame of reference. The designer must have a defined
interface towards the overall system that the design is going to be a part of to make

sure that the system can exchange data, information, or knowledge with any other
system.

Figure 1 shows an example of ho systems traditionally have been designed and
connected together.

In this example we show two systems that had to exchange information after they
where individually designed without consideration of interoperability. In some
cases the system designers have thought ahead and developed an interface that will
make the system able to communicate with other systems. Numerous of attempts
through the years on standardization on one type of interface have failed. As a
result, it has been considered the best possible design to leave the current
“standard” interface as a communication gateway to the system.

We claim that we need to change this way of thinking of systems to achieve good
interoperable system design. With the development process that we referred to as
current practice, we can recognize a number of design weaknesses:

• Systems may not be designed for ease of data exchange with all other
systems. A communication interface might be prepared on individual
systems, but there is no common agreement to ensure that it will match other
systems.

• The design of systems individually without making them a part of a whole

requires individual administration and control of each system. When the
systems are combined, administration and control of systems may not scale
well in terms of global control.

• Connection-oriented communication is very resource demanding and often

blocks more resources than it effectively uses.

• System survivability is difficult to obtain without duplicating recourses if
communication between systems is implemented on dedicated systems. In
figure 1 ordinary connection-oriented communication and end-to-end
communication lines are used and additional resources have to be used to
ensure availability.

• Up scaling of the system is difficult because the system is not designed for

infinite scalability.

The list above is not comprehensive, but illustrates some of the most important
interoperability shortcomings of the current methods of design.

3. Converging networks

3.1 The hourglass model

A well-known system design that has managed to extend the life cycle for a
number of information systems and handle increasing demand for scalability is the
Internet. One of the objectives for the researchers who designed the original
Internet was to make it possible to incorporate new technologies without
discarding existing networks. Because of this objective we can say that the Internet
as originally designed to connect stovepipe systems. The main reason for the
success of the Internet can be credited to the IP "hourglass" model; the IP protocol
has as a stable point of reference provided a consistent, best-effort service interface
that has permitted the relatively independent development of applications and
underlying networking technology.

We are currently
witnessing that increased
research on network
services that will enable IP
networks to offer new
types of services.
Constraint-based-routing
offers a way to implement
policy and quality-of-
service distinctions needed
by different applications.

Together with additional research on multicasting techniques, that decrease the
bandwidth demand dramatically, this has convinced most of the network society
that it in the near future it will be possible to integrate all types of network services
into one network. A network like this must be able to accommodate requirements
for all types of communication whether it is voice, video, or data. In addition,
network routing policy and enforcement of the routing quality-of-service policy
must be implemented in an overall network management system.

3.2 Increasing interoperability with an object-

networking model

With the hourglass-model in mind let us try to illustrate a model for an all-purpose
communication network with the transportation services in center.

As we can see from figure 3, the model of object networking builds on the
principles of the Internet hour-glass model. The IP layer of the protocol stack
implements the fixed level of reference that is needed to ensure interoperability. As
new systems are created, they are added to the network as “just another” network
participant. We will return to the network participant later and define a set of rules
that it must comply with to be a well-behaved network object.

Redefining the focus of what is in the center of our system gives the designer of a
new system a fixed reference point and the designer knows what interface to deal

with when the system is going to be networked. Compared to the development
philosophy of dealing with connectivity to other systems as they show up, this
approach to networking can eliminate the previously listed interoperability
problems. When designing a good network object for this architecture, the object
should have an IP interface and be able to share information and controls with the
rest of the objects in the network. To adopt the object-oriented networking model,
as a comprehensive way of supporting communication for voice, video, and data,
two major tasks must be accomplished:

• Implement in IP networks both technology for routing of traffic that requires
different levels of services and multicast techniques.

• Choose and adopt the best reference point in the stack of protocols, which as

of today still is IP. This choice can change in the future, but with the size
and the number of applications the Internet has taken on, we know that
technology for stage-deployed implementation will be available when it is
necessary to replace IP.

4. Interoperability enabling technologies

The best-effort service has worked fine for most traditional Internet applications
(such as FTP and email), but it is interconnected with newly emerging real-time,
multimedia applications such as Internet telephony, video-conferencing, and video-
on-demand. These applications require the stable quality and delivery rates that we
normally get through connection-oriented services. In other words, if we want to
use IP-based networks for these new applications, we require better transmission
services than best effort.

For several years extensive research has been conducted to implement routing and
connection features that can distinguish between the different levels of service that
are needed for a specific network communication session in IP networks. The
implementation of the research results has been slowed down because the
commercial sector has tended to throw increased bandwidth at the problem. The
focus on wireless networks has again set the focus on the need to come up with
bandwidth-economical solutions. In the RF-sector, bandwidth is a very scarce
resource, and the demand for solutions with less waste of bandwidth is never
ending. We now see the evolution in different kinds of network architectures
towards more flexible support for multiple service categories.

QoS-based routing is defined in [RFC2386] as “A routing mechanism under which
paths for flows are determined based on some knowledge of resource availability

in the network as well as the QoS requirement of the flows.” To keep our concepts
clear, we need to explain two relevant concepts called policy-based routing and
constraint-based routing. Policy-based routing indicates that the routing decision is
not based on the knowledge of the network topology and metrics, but on
administrative policies. A policy may, for instance, prohibit a traffic flow from
using a specific link for security reasons, independent of capacity and quality
issues. Network management operators usually statically configure policy-based
routing.

In contrast constraint-based routing refers to computing routes that are subject to
multiple constraints. These constraints can include QoS constraints (e.g.,delay,
jitter, bandwidth) and policy constraints (e.g., insecure routes) For this reason both
QoS-based routing and policy-based routing can be considered special cases of
constraint-based routing.

QoS-routing according to the DiffServ model [RFC 2475] currently looks to be the
most promising model available. Instead of maintaining individual flows on all
routers (like in the IntServ model [RFC 1633]), flows are divided into different
types of classes, and packets that come to a server receive a service based on its
labeled importance. In IPv4 the type of service field (renamed to Differentiated
Service, DS) is used as label for what quality the packet requires. A routing policy
must be maintained in each router to enable interpretation of and decision making
for that router based on the DS label. When the data enters the routing network, its
DS-class is identified. The IP-datagram is marked with the service it belongs to
and sent on its way through the network. Routers in the path look in the IP header
to determine where to send the packet just like in best-effort routing. But, in
addition, the router checks what service class the packet belongs to. Packets with
different service classes have different queues in the routers, and in this way the
router can distinguish between packets that need higher rather than lower priority.
The idea is that a packet containing an email can wait to be routed for a few
seconds while priority is given to a packet containing real-time voice data for a
telephone conversation.

Implementation of the DiffServ model requires several new routing functions. First
of all, admission control must be implemented. The network must have the ability
to refuse to take on more customers when the demand exceeds a certain capacity.
Second, the routers must have a feature for packet scheduling. As mentioned when
going through the model of how Diffserve works, the routers must have a method
to threat different classes differently (e.g., different queues). Third, a scheme for
traffic classification must be developed. This means that the network must sort the
network traffic into different flows or classes based on the need for service. Last

but not least, functions for implementation of policies to allocate the network
resources must also be implemented.

Together with public key infrastructure and multicasting solutions (beyond the
scope of this paper), the suggested models for QoS routing brings us close to the
goal of serving all types of traffic in one network [4]. As mentioned earlier, the
DiffServ model looks most promising for several reasons. First of all the IntServ
model puts several extra processing and storage tasks on all the routers in the
network, which introduces concerns about the use of resources. In addition, the
IntServ model has several security problems that can result in implementation
difficulties because more traffic flow information is passed between routers.

5. Requirements for the network object

5.1 A sequence of sense-decide-act modules

To ensure a good design in our object networking architecture and to make sure
that the network objects of the system will be interoperable, several requirements
must be established for them. We can divide the behavior of any information
system into a series of modules that sense, decide, or act. We believe that a well
performing information system consists of a series of sense-decide-act sequences,
comparable to John R. Boyd’s OODA loop [5] that characterizes a well performing
decision maker. Ultimately any function of a system will perform one of these
functions to contribute to the overall system task. The most flexible design that
makes changes and reuse of network objects possible is to make an individual
network object for each of the sense–decide–act modules. If this is done properly,
any network object can be addressed individually and the module can be reused, as
a part of any system. In cases where a complete division into sense-decide-act
functions is impractical, one should aim at designing complete sense-decide-act
sequences. A system performing incomplete sense-decide-act sequences is
normally an indicator of less preferable design (e.g., sense-decide-decide-act will
under normal circumstances work better as sense-decide-act-sense-decide-act).

We can identify a number of advantages in this system development process. First,
it is very easy to update and replace pieces of the system as they become obsolete.
Second, media interoperability becomes natural in system architecture like this.
End systems can easily be share between information systems. As an example, we
can imagine a sensor that gets used by several systems. If the data- and semantic-
interoperability problems are solved, then we can reuse sensor and decision
modules to address changing requirements. For defense systems, can this be an
advantage. Even if the trend is to use more and more COTS products, specialized

systems need to be developed to support special defense requirements. These
specialized systems tend to have longer life cycles than other systems and can be
reused as part of a modernized system. A third advantage is a more natural support
for evolutionary design. New solutions for parts of the system can more easily be
implemented as new technology becomes available or user requirements change.
Yet another advantage is the possibility for several users to share the cost and
complexity of building and maintaining a system, which can bring it inside the
range of affordability of new user groups.

5.2 The right interface for a network object
In order to ensure sufficient communication interoperability between the network
objects and the rest of the network, the object must have a standardized interface.
We have already motivated the fact that the system must interface to the routable-
networks interface. IP-based networks supported by constraint-based routing
services are the current routable type of interface that can support communication
interoperability for different (ultimately all) systems.

In order to support the connection of legacy systems, the network object interface
must support some way of piping data between such systems over the network. For
example, the MIME protocol supports such an encapsulation interface.

If the architecture should be able to support all types of networks objects, then the
importance of security solutions is going to grow with support for security down to
the individual application object in each network object. When the communication
function has an open global structure, every information exchange must be
authenticated to avoid the possibility of creating chaos. In addition, a lot of
information systems will require confidentiality. Some of the underlying security
issues are solvable using PKI mechanisms, identification and authentication. A
scalable solution for PKI infrastructures is yet to be developed, but this does not
prohibit implementations where information systems distribute their own keys for
the affected domain.

The main purpose of designing a network where the different systems use a
common communication structure is to be able to control and share data remotely.
One available tool for this is a request-reply protocol like Simple Network
Management Protocol (SNMP) administrated from a Management Information
Base (MIB-II).

 We can sum up five identified basic functions the network-object interface
must support:

1. It must have a routable communication interface function. A good example

is the standard LAN interface (100 Base-T of FDDI) used in most of
today’s data communication networks.

2. An interface function for encapsulating data from systems that was not
initially designed as a network object.

3. A security interface to support security down to individual application
object level. A public key infrastructure type of interface function will
solve this problem.

4. Quality-of-Service interface function. The information package sent from
the object must be labeled with necessary routing requirements information
so that a constraint based routing system can support it with proper routing
service.

5. A management interface function to enable the network object to send or
receive controls.

6. Summary
In this paper we have suggested a change in the way
overall communication architecture between systems is
designed. The rapid changes in information system
functionality and the need to reuse parts of an
information system force us to think of all information
systems as part of a whole. New technology like
constraint-based routing, multicast routing, and pubic
key infrastructure makes it feasible to integrate all
communication services into one communication network.
This will require a change in thinking from the way we
design information systems today. We cannot expect
individual vendors to cooperate with every competitor
and deliver solutions that solve the communication
interoperability problem. Government as well as
commercial companies will have to make a choice of a
common platform to build their systems on to ensure
interoperability among systems. The trends in
communication show us that because of the widespread
application of Internet solutions, negative lock-in
effects from building this platform with IP as a fixed
reference is very small. When it is relevant to
implement technology to replace IP, it will come with
solutions for stage-deployed implementation.

REFERENCES
[1] J. A Hoffer, J. F. George, J. S. Valacich, Modern System Analysis & Design, Addison-
Wesley, 1998

[2] S. H. Haeckel: Adaptive Enterprise: Creating and Leading Sense-and-Respond
Organizations”, Harvard Business School Press, 1999.

[3] T. H. Davenport, L. Prusak: Working Knowledge: How Organizations Manage What they
Know, Harvard Business School Press, 1998.

[4] Shigang Chen, “Routing Support for Providing Guaranteed End-to-End Quality-of-Service”,
Ph.D. thesis, University of Illinois Urban-Champaign, May 1999,
http://cairo.cs.uiuc.edu/papers/Scthesis.ps

[5] John R. Boyd, "A Discourse on Winning and Losing," unpublished briefing and essays, Air
University Library, document no. MU 43947 (August 1987).

[RFC 2386] “A Framework for QoS-based Routing in the Internet”, IETF

[RFC 1633] “Integrated Services in the Internet Architecture”, IETF

[RFC 2475] “An Architecture for Differentiated Services”, IETF

